Model No. # 12P150 12-inch 150W Coaxial Driver #### **INCLUDES:** 12-inch 150W coaxial driver THE 12P150 is a high output, high quality driver with a robust motor structure engineered for high energy, high ceiling applications like clubs, sports bars, airport terminals and concourses, hotel ballrooms and convention center exhibit floors. #### **FEATURES** <u>DESCRIPTION</u>: High frequency compression driver coaxially mounted behind the woofer provides increased power handling with greater efficiency than a conventional dome tweeter. Built-in crossover network with a second order high pass and second order low pass filter accomplishes proper frequency division between the two drivers. Includes 38 oz. magnet and 2 inch voice coil wound on a Kapton former. <u>FRAME</u>: Stamped 18-gauge steel with corrosion-resistant black electrocoat finish. POWER RATING: 150W RMS FREQUENCY RESPONSE: 40Hz-20kHz (±6dB) <u>DISPERSION ANGLE</u>: 70 degrees conical @2kHz octave (-6dB). <u>SENSITIVITY</u>: Average SPL = 96.3dB (@1W/1M); Maximum SPL = 118.1dB (calculated based on power rating and measured sensitivity). MOUNTING DEPTH: 7.13 inches NET WEIGHT: 9.75 lbs. COUNTRY OF ORIGIN: Assembled in U.S.A. with global components. # **A&E SPECIFICATIONS:** The 12-inch driver shall be Lowell model 12P150, which shall be of the coaxial compression type having electrically independent high and low frequency transducers. The low frequency section shall have a 12 in. diameter cone and the high frequency section shall be a compression driver. A built-in electrical crossover network shall be employed to accomplish the proper frequency division between the two drivers. The crossover shall be at 2500 Hz with a second order high-pass filter and second order low-pass filter. The driver shall be capable of producing a uniform audible frequency response over the range of 40Hz-20kHz (±6dB) with dispersion angle of 70 degrees conical @1W/1M. Average sensitivity shall measure 96.3dB (SPL at 1W/1M). Power rating shall be 150 watts RMS. The low frequency voice coil shall have a 2 inch diameter and operate in a magnetic field derived from a strontium ferrite (ceramic) magnet with 38 oz. nominal weight. The high frequency voice coil shall have a 1-inch diameter and operate in a magnetic field derived from a ceramic magnet with 7.7 oz. nominal weight. Voice coil impedance shall be 80hms. The driver shall have a round, structurally reinforced stamped 18-gauge steel frame to maintain precise mechanical alignment. The driver shall have a 12-in. overall diameter and eight holes equally spaced at 45 degrees on a 11.6-inch diameter mounting bolt circle. Overall depth shall not exceed 7.13-inches. External metal woofer parts shall be black electrocoat to resist rust and corrosion. # POLAR DATA (HALF SPACE) # SPL VS. FREQUENCY (1W/1M, HALF SPACE, ON-AXIS) # **IMPEDANCE** ### **DRAWINGS** # DRIVER SPECIFICATIONS PERFORMANCE: Power Rating 150 watts RMS measured per E.I.A. Standard RS-426B 118.1dB Maximum SPL (calculated based on power rating and measured sensitivity) Impedance Driver Nominal Impedance: 8 ohms Driver Minimum Impedance: 5.6 ohms @12377Hz Driver Measured Impedance: 14.7 ohms @1kHz PHYSICAL - WOOFER: PHYSICAL - HIGH FREQUENCY DRIVER: Type Compression driver MECHANICAL: Basket 18-gauge stamped steel with black electrocoat Outside Diameter 12.02 in. (305mm) Cutout Diameter 11 in. (279mm) Mounting Depth 7.13 in. (182mm) Net Weight 9.75 lbs. (4.4kg) THIELE-SMALL PARAMETERS: | Pe150W | Qts0.48 | BL9.5 Tm | Sd82.5 in ² (532cm ²⁾ | |---------------------|---------|---------------------------|---| | Fs 38 Hz | Qes0.51 | Efficiency, h2.2% | Mms34 g | | Xmax 0.12 in. (3mm) | Qms7.4 | Vas206 liters, 7.3 cu.ft. | Cms0.51 uM/N | Re 5.6 ohms SCOPE OF PERFORMANCE AND POWER TESTS: Lowell drivers and loudspeaker systems are tested to provide specifiers and contractors with data that reflects the performance of production products. Testing equipment includes the GoldLine TEF-20 analyzer (for performance measurements) and the LinearX LMS measurement system (for Thiele-Small Parameters). Power Rating is tested based on EIA Standard RS-426B. Frequency Response data is provided which is the measured frequency response range (defined by ±6dB) which is useful in predictive engineering calculations. Sensitivity (SPL) data is presented in two ways: - 1. Log Average SPL is a computer calculated log average of the SPL measured at 1 meter with 1 watt input over the stated frequency response range. - 2. Maximum SPL is calculated based on the measured log average SPL and the 80hm power rating of the speaker. Maximum SPL for speakers that do not include an 80hm input, is calculated based on the measured log average SPL and the highest transformer power tap. Dispersion Angle is defined as the angle of coverage that is no more than 6dB down from the on-axis value averaged over the 2000Hz octave band. Since speech intelligibility is very dependent upon the 2000Hz octave, this specification is quite useful in designing speech reinforcement systems that provide even coverage and speech intelligibility. Thiele-Small Parameters for raw drivers are measured using the LinearX LMS measurement system. These parameters are useful in determining the optimum type and size of enclosure for a specific driver. Polar Data is presented for the averaged one octave band surrounding the center frequencies of 1000Hz, 2000Hz, 4000Hz, and 8000Hz. Radial polar response curves show the relative change in sound pressure level as one moves from directly on-axis to an increasingly off-axis listening position. Since coaxial speaker drivers are symmetrical in the vertical and horizontal directions, only one set of polar plots will be presented for coaxial drivers and speaker systems incorporating coaxial drivers. Impedance Data may be represented in four different ways depending on the particular model: - 1. Nominal Impedance is the generally accepted impedance value for use in making comparisons with competitive products. - 2. Impedance Curve is a graphical representation of the 8ohm driver impedance measured in the lab and gives the impedance of the device over the audio frequency range. - 3. Minimum Impedance is the lowest impedance measurement of the 8ohm driver at a frequency within the specified frequency response range of the speaker. - 4. Impedance Measured at 1kHz is the reading expected to be measured by a technician in the field using a typical industry 1kHz impedance meter. ### 12P150 OVERVIEW | Model No. | Driver | Transformer | Transformer
Primary Taps | Mounting
Depth* | Outside
Diameter | Net
Weight | Sensitivity*** | System Specs
Frequency Response | Dispersion
Angle**** | |-----------|------------------|-------------|-----------------------------|--------------------|---------------------|---------------|----------------|------------------------------------|-------------------------| | 12P150 | 12" 150W coaxial | | | 7.13" | 12.02" | 9.75 lbs. | 96.3 dB | 40Hz-20kHz (±6dB) | 70° | ^{**} Sensitivity: Average SPL (measured 2.83V @ 1M) Note on Speaker Spacing: Conical dispersion measurements are provided for comparison with other speakers. To determine correct speaker spacing, see the technical paper "Distributed System Speaker Spacing for the Integrator" (www.Lowellmfg.com) which explains the difference between conical and linear dispersion and the measurements to use for best results. For quick calculations, a calculator for speaker spacing is also available online under Resources – Interactive Tools. ^{***} Dispersion Angle: Conical @ 2kHz octave (-6dB)